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ABSTRACT 
The hydrodynamics and thermal characteristics of a laminar rivulet flow down a vertical surface are 
investigated. The velocity distribution within a rivulet is determined numerically by the use of a finite 
element method. In turn, a regression analysis is performed to fit the numerical data with an assumed 
closed form function. The breakup of a thin liquid film into rivulets is also considered. Heat transfer 
characteristics are determined. Nusselt numbers were obtained for the two cases of prescribed constant 
wall temperature and constant wall heat flux. 
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regression coefficients 
total mechanical energy 
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function defined by (28) 
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average heat transfer coefficient at the solid-liquid interface 
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average temperature 
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actual and dimensionless velocity in a rivulet in the z-direction 
rectangular coordinates 
dimensionless rectangular coordinates 
rivulet thermal diffusivity 
contact angle 
function defined by (19) 
maximum height in a rivulet's cross-section (at x = 0) 
local height in a rivulet's cross-section 
polar coordinate 
ratio of rivulet width to wetness factor 
rivulet dynamic viscosity 
rivulet kinematic viscosity 
liquid density in the rivulet 
surface tension 

Subscripts 
avg 
max 
f 
lg 
o 
r 
sg 
sl 
w 

average 
maximum 
unbroken film 
liquid-gas interface 
local value of film 
rivulet 
solid-gas interface 
solid-liquid interface 
wall 
ambient 

INTRODUCTION 

When a thin liquid film flows down a vertical surface by the action of gravity, its behaviour is 
controlled by surface tension, surface roughness, adsorption of contaminants or impurities at 
the surface of the liquid, and by aerodynamic and body forces. The liquid-gas interface tends 
to contract due to surface tension forces, which may lead to the breakup of the liquid film into 
individual streams or rivulets separated by dry spaces. These phenomena are encountered in 
many practical applications such as in condensers, packed beds, the cooling of nuclear reactors 
and turbine blades. 

The surface tension phenomenon derives from intermolecular cohesive forces. The molecules 
in the liquid film are mainly subject to attraction forces between neighbouring molecules. At 
the liquid-gas interface, an unbalanced cohesive force exists and is directed towards the liquid 
side. This imbalance causes the interfacial liquid molecules to move inwards. Consequently, the 
interface tends to contract, which may lead to the breakup of the liquid layer if its thickness, 
directly related to the wetting rate of the surface, is smaller than a prescribed value referred to 
as the critical or minimum film thickness. 

The hydrodynamic analysis describing the velocity distribution in rivulets has been the research 
subject of many investigations. The liquid-gas interfacial shape as well as the velocity distribution 
within the rivulet were theoretically analysed by Towell and Rothfeld1. However, their results 
were limited to relatively flat rivulets, i.e. to contact angles of less than 20°. Kern2 obtained a 
numerical solution for the two-dimensional velocity distribution in the case of constant interfacial 
curvature. Good agreement with experimental results was obtained for contact angles up to 
approximately 90°. The approach of Towell and Rothfeld1 was improved by Allen and Biggin3 

who used a power series method and obtained results for the first-order solution. However, this 
was found to be inadequate for some cases. 
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In a later study, Bentwich et al.4 obtained an analytical solution for a liquid film on a vertical 
plate. The solution was presented in the form of an infinite integral that had to be evaluated 
numerically for each location within the cross-section of the rivulet. Because the method was 
found to be inconvenient, a generalized method based on the Ritz-Galerkin approach was used 
to obtain a polynomial solution for the case of an inclined plate. It was found that, up to a 
contact angle of 130°, a four-term expansion produced adequate velocity profiles. For larger 
contact angles, an unreasonably large number of coefficients would be necessary for high accuracy. 

The problem of stability of gravity driven liquid films, and their breakup into identical rivulets 
has been analysed by a number of investigators5-7. The minimum thickness of the liquid film 
flowing vertically down a solid surface was established as was the size and spacing between 
rivulets7. Similarly, Mikielewicz and Moszynski have considered the case of a shear driven liquid 
film8. 

The current study deals with the hydrodynamic and thermal analysis of a rivulet flowing down 
a vertical solid wall under the action of gravity. The analysis entails four different aspects: the 
first involves the determination of the shape of the liquid-gas interface which is independent of 
the velocity field for a steady flow; the second involves the determination of the velocity 
distribution within the rivulet; the third involves the determination of the minimum film thickness 
of a stable film flow and the resulting rivulet configuration at breakup; and the fourth involves 
the determination of the temperature distribution within the rivulet from a thermal analysis of 
several operating conditions. 

HYDRODYNAMIC ANALYSIS 
Liquid-gas interface 

In order to realistically pursue the theoretical analysis of a rivulet, several assumptions were 
imposed. The assumptions made are as follows: 
• The surrounding gas phase has a negligible effect on the hydrodynamics of the rivulet, i.e., 

the shear force at the liquid-gas interface is dominated by the gravitational body force. 
• All physical properties of the rivulet are constant. 
• The liquid which forms the rivulet is incompressible and Newtonian. 
• The flow is steady, laminar, fully developed, and ripple free. 
• The direction of flow is vertically down a straight line on a solid surface. 
• No slip exists at the solid-liquid interface. 
The coordinate axis adopted is as shown in Figure 1. Since the two contact lines were assumed 
to be stationary, each contact line is subject to the tensions of three surfaces, i.e., the solid-liquid, 
the liquid-gas, and the solid-gas interfaces. The equilibrium of these tensions may be depicted 
from the Young and Dupré equation9: 

σsg = σsl + σlg cos β (1) 
The curve representing the liquid-gas interface: y = η(x), may be determined by the use of the 

Laplace-Young equation. The solution of this equation shows that the radius of curvature of 
the interfacial configuration is constant, which means that the curve representing the liquid-gas 
interface reduces to a segment of a circle of radius R. The magnitude of R depends on the contact 
angle β, and the size of the rivulet, i.e., the maximum height δ, or the maximum width as 
illustrated in Figure 1. From geometric considerations, the following can be written for the local 
rivulet height: 

η(x) = R(cos θ-cos β) (2) 

where θ = sin-1(x/R). 
The contact angle β depends on the properties of the involved media such as the roughness 

condition of the solid wall, surface tension and surface adhesion of impurities or wetting agents. 
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On the other hand, the size of a rivulet depends on the particular problem under consideration. 
In the current study, the results for the case where a thin liquid film breaks up into identical 
rivulets of constant radius of curvature R will be presented. This configuration is shown in 
Figure 2. Expressions for the parameters F (the wetness factor), R (the rivulet radius), and λ 
(spacing parameter) will be developed shortly. 

Velocity distribution 
For the described assumptions, the Navier-Stokes equations, neglecting acceleration effects, 

reduce to the following: 

where P is the pressure in the liquid and w is the velocity. Equation (5) is the governing 
momentum equation in the z-direction which needs to be solved. It is the well-known Poisson 
equation which is of an elliptic type. The boundary conditions resulting from the previous 
assumptions are: 

w = 0 at y = 0 (no slip) (6) 

where r is the coordinate in the radial direction (normal to the liquid-gas interface) measured 
from the centre of curvature of the liquid free shear boundary. The latter equation may be 
rewritten in cartesian coordinates as: 

Introducing the following non-dimensional parameters: 

where δ, the maximum rivulet height, may be expressed as: 
δ = R(1-cos β) (11) 



HYDRODYNAMIC AND THERMAL ANALYSIS OF RIVULET FLOW 67 

the governing equation and the corresponding boundary conditions become: 

W = 0 at Y = 0 (13) 

Difficulties were encountered by many investigators seeking an exact analytical solution to 
the above equations. This resulted in solutions which were in general special cases applicable 
to small contact angles. Thus, numerical techniques were adopted. A widely used and very 
effective method for the solution of the above field equation is the finite element method10. The 
procedure requires the generation of nodal points within the domain of calculations. These 
points are then used to divide the domain into a finite number of linear triangular elements. 
These elements are convenient since they provide a good approximation to any irregularly 
shaped boundary. This is particularly advantageous in cases of large contact angles. Figure 3 
illustrates an example of element generation for β = 90°. 

Examination of the non-dimensional form of the governing equation and boundary conditions 
reveals that the solution is independent of the rivulet maximum height and width. However, 
there corresponds a unique solution for each value of contact angle. Therefore, solutions were 
obtained for several contact angles over a wide range of practical interest: 0° < β < 160°. 

A closed form expression for the velocity distribution is highly desirable and necessary for 
further studies. For example, since the velocity is implicitly used in the energy equation as the 
mechanism for enthalpy transport, an analytical expression for the velocity tends to speed up 
the computation solution for the rivulet temperature distribution. In addition, the stability 
analysis of thin liquid films requires such an expression as will be seen in the following section. 
Consequently, for a particular value of the contact angle β, it is assumed that the non-dimensional 
velocity W(X, Y) may be expanded as a power series in the following form: 

where the coefficients amn must be determined. It must be borne in mind that each of the latter 
coefficients is a function of β. Equation (13), which is the 'no slip' condition, reveals the fact 
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that am0= 0. In other words, all terms of the series containing powers of X alone vanish. 
Furthermore, in view of the symmetry condition defined by (14), all terms containing odd powers 
of X also vanish. Finally, the first twelve non-zero terms in (16) are retained and the notation 
Wn is adopted for the velocity where n indicates the number of terms included in the 
approximation. Accordingly, 

Wn = 12(X,Y) = b1Y + b2X2Y + b3Y2 +b4X2Y2 + b5Y3 + b6X2Y3 + 
b7Y4+ b8X4Y + b9X4Y2 + b10X2Y4 + b11X4Y3 + b12X4Y4 (17) 

where the coefficients b1 through b12 are functions of the contact angle β. To determine these 
coefficients for a particular value of β, the numerical solution of (12) was obtained to produce 
values of W at each nodal point of the discretized domain. Then, a least squares regression 
analysis was performed to fit this data at all the grid points. This analysis results in the numerical 
evaluation of b1 through bn for the function Wn(X, Y) in (17). In most practical cases, it was 
found that only the first 4 terms in (17), was sufficient for the approximation of the velocity for 
contact angles less than 120°. These coefficients were plotted against β in Figures 4-7. 

In many previous studies, the velocity profile at a given X-location in the rivulet, where the 
height is t = H(X), is taken to be the same as that of a film of uniform thickness t. Therefore: 

where the subscript f refers to the film model. 
The results of W4 in (17) and the film model Wf in (18) were compared to the actual velocity 

distribution resulting from the direct numerical solution of (12) using the finite element method 
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(FEM). This comparison is illustrated in Figures 8, 9 and 10 for contact angles of 45°, 90°, and 
120°, respectively. 

The non-dimensional rivulet average velocity Wavg, may be determined by dividing the mass 
flow rate mr by the product of the liquid density and the cross-section area of the flow. Using 
the expression of mr which will be developed shortly (see 27), it is found that: 

The average velocity and half of the maximum velocity in a rivulet were plotted in Figure 11. 
It may be seen that for 0 < β ≤ 90°, the average value of Wavg is approximately 0.2255. This 
suggests that ψ(β) is almost a constant in that range of contact angles. The curve representing 
1/2Wmax is in excellent agreement with that obtained in Reference 4. 
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A flow Reynolds number may be defined as: 

Using (19), this yields: 

The above equation was plotted in Figure 12, which suggests that: 

with an absolute error of less than 0.6% for 0 < β ≤ 90°. Kern2 obtained a value of 1.645 for the 
proportionality constant. The film model, (18), yields a corresponding value of 1.610 with an 
absolute error of less than 1.5% for the same range of contact angles. 

Minimum film thickness 
In view of the assumed rivulet configuration shown in Figure 2, a stability analysis will be 

performed to determine under what conditions a gravity driven film on a vertical wall will break 
up into rivulets. Under such conditions, the unknown parameters F, R, and λ must be determined. 
The method described by Mikielewicz and Moszynski7 will be used for this purpose. However, 
in this study, the velocity distribution W(X, Y) defined by (17) will be used rather than (18), as 
in Reference 7. 

The criteria used for the transition from film flow (designated by subscript f) to rivulet flow 
(designated by subscript r) are the following: 

(1) mf = mr 
(2) Ef = Er, and 
(3) Er is minimum with respect to the rivulets configuration (shape and spacing). 

The mass flow rate per width λ for the film flow is: 

where ho is the film thickness. The velocity distribution w(y), can be easily shown to be: 

Therefore, 

The mass flow rate of rivulets per width λ of the film, which corresponds to the flow in a single 
rivulet, is: 

Introducing the non-dimensional parameters defined in (10), and letting Xo be the half width 
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of the rivulet divided by δ, the following can be written: 

where W4(X, Y) is defined in (17). Substituting the corresponding parameters for the variables 
above yields: 

where, 

and the function f i j(β) are integral functions defined as: 

From criterion 1, (24) and (27) are equated, yielding: 

But as may be seen in Figure 2, λF/2= R sin β, therefore the wetness factor F is: 

The total mechanical energy of the film, consisting of the kinetic and surface tension energies, 
per width λ is: 
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Using (23), this becomes: 

The corresponding mechanical energy in the rivulet is: 

Substituting (1) and (17) into the above, using the first four terms only, and performing the 
integration yields: 

where 

Using (31) to replace R and the relation F =2R sin β/λ to replace R/λ, (35) becomes: 

The third criterion for rivulet breakup can be written as: 

Therefore, from (37): 

Using (31) allows this to be written as: 

Solving for R yields: 

where, 

Finally, in order to satisfy criterion 2, (33) and (37) are equated. This yields: 
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where R+ is given by (38), and 

Reference to (38) and (40) reveals that the dimensionless parameters R+ and h+ are solely 
functions of the contact angle. 

The parameter h+ is interpreted as the dimensionless minimum thickness of an unbroken, 
stable, film. In the case where the actual dimensionless film thickness reaches and barely falls 
below h+, the film breaks up into identical rivulets of non-dimensional radius R+, with the 
corresponding spacing between rivulets defined by the wetness factor given by (31). Values of 
h+, R+, and F were plotted and compared to the results given in Reference 7 as shown in Figure 
13, 14 and 15, respectively. 

THERMAL ANALYSIS 
The formulation of the energy equation that governs the heat transfer process in a rivulet is 
based on the following assumptions: 
• Constant physical properties of the liquid. 
• Negligible heat conduction within the rivulet in the z-direction compared to the conduction 

in the x and y-directions. This is because the Péclet number (Pé = Re.Pr) in this particular 
problem is large. 

• Steady state heat transfer. 
• Quasi-steady liquid flow: the velocity distribution at any z-location may be expressed by 

W4(X, Y) given by (17). 
With regards to the preceding assumptions, variation of the temperature distribution in the 

z-direction will be due to change in the liquid enthalpy induced by the fluid flow. This variation 
decreases with increasing distance z, as the liquid flows down the plate, until the temperature 
profiles become fully developed and the rivulet reaches its asymptotic temperature distribution 
Tr(X,Y). 

The governing equation may be written in cylindrical coordinates, for convenience of solution, 
as follows: 

where γ = α/w(r,θ). 
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The boundary conditions are: 
• At θ = 0 (or x = 0): 

• At r = R (liquid-gas interface): 

• At y = 0 (rivulet base): 
Tr = Tw (constant wall temperature), or (45) 

The latter may be rewritten in cylindrical coordinates as: 

The energy equation given by (42) is of the parabolic type and, is analogous to the unsteady 
2-D heat conduction equation with variable thermal diffusivity, where z and γ in the current 
problem are analogous to time and thermal diffusivity, respectively. The solution of (42) was 
carried numerically using the ADI (alternating direction implicit) method11. The method was 
selected due to its speed and accuracy. 

RESULTS AND DISCUSSION 
Sample calculations were performed for several operating conditions. Average heat transfer 
coefficients at the solid-liquid interface were obtained, and the effect of rivulet size, i.e., maximum 
height or maximum width, on the transfer characteristics was investigated. 

In the following examples, it will be assumed that the liquid which forms the rivulet is water. 
The contact angle, corresponding to a particular solid surface, is assumed to be β = 45°. The 
initial temperature of the rivulet is taken to be uniform at 10°C. 

As a first example, consider the case where the base of the rivulet is subject to a uniform heat 
flux q" = 1500W/m2, corresponding to the boundary condition in (46). The fully developed 
temperature distribution within the rivulet is illustrated by the contour lines shown in Figure 16. 
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It is clear that the temperature is maximum at the centre of the rivulet, and decreases to its 
minimum value at the uppermost point of the rivulet cross-section. 

In the next example, consider the case in which the rivulet base is maintained at a uniform 
temperature of Tw= 10°C. Unlike the previous case, the isotherms in the case of a constant wall 
temperature do not intersect with the rivulet base as shown in Figure 17. These isotherms show 
that the temperature distribution has a stronger dependence on the y-direction than on the 
x-direction. However, this may not be true for the temperature gradients as depicted in Figure 18. 

The effect of the size of the rivulet on the temperature response is illustrated in Figure 19. 
This is the case of a constant wall temperature where the temperature at the uppermost point 
in the rivulet is plotted against the distance of travel in the z-direction. Clearly, the smaller the 
rivulet, the faster is the response. In other words, fully developed temperature profiles are 
established at a shorter travel distance. 

Finally, an average heat transfer coefficient at the solid-liquid interface is defined as: 

where is the rivulet average temperature given by: 

The corresponding average Nusselt number is defined as follows: 

The previous examples were considered along with several operating conditions to generate 
the data shown in Figures 20 and 21 for the cases of constant wall temperature, and constant 
wall heat flux, respectively. In both cases, the average Nusselt number did not vary appreciably 
from one set of operating conditions to another. The following correlations were deduced from 
the latter figures: 

= 2.63+0.000143 Re (constant Tw) (51) 

= 3.20+0.000237 Re (constant q") (52) 



76 KAMEL M. AL-KHALIL ET AL. 

These results are valid for laminar and stable flow conditions. The range of Re shown in Figures 
20 and 21 do not necessarily represent the latter conditions which should be actually determined 
experimentally. 

CONCLUSIONS 
The hydrodynamics and thermal characteristics of a laminar rivulet flow have been presented. 
It was observed, that the film model of the velocity distribution may be used for very small 
contact angles only. On the other hand, the closed form expression derived from the functional 
regression may be used over a wide range of contact angles. The validity of this was illustrated. 
However, despite this disadvantage, the film model was found to be adequate for stability analysis 
of thin liquid films. In the regression analysis performed on the velocity values, only the first 
four terms were required to adequately represent the velocity distribution in a rivulet for contact 
angles up to 120°. At larger contact angles, it was found that as many as 12 terms were necessary 
to obtain a good accuracy. 

In the thermal analysis, a correlation between the average Nusselt number and the Reynolds 
number, which is directly related to the rivulet size, was established. The Nusselt numbers 
obtained for the two cases of constant Tw or q", were roughly constant in each case. It was 
found that the average heat transfer coefficient at the solid-liquid interface is inversely 
proportional to δ, which means that the heat transfer coefficient is larger in the case of a smaller 
rivulet size due to the decrease of resistance to heat flow. 
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